The last weeks have been a bit slow when it comes to the ice boat build. One reason for slow progress is that the family visited a ski resort for a couple of days.
When this picture was taken the weather was perfect! Only a couple of degrees below zero almost no wind and sun shining from a clear blue sky. Perfect conditions for down hill skiing! When it comes to outdoor activities regardless if it is summer or winter activities they are always to some extent relying on the weather. Ice boating is no exception and when it comes to being weather sensitive ice boat sailing must be one of the worst. You need both ice and wind conditions to be good to enable sailing. Not to mention that you need to have the day off when the conditions are favorable.
Back to the topic some small progress has been made on the boat also.
In the plans for the Isabellakiss iceboat the runner plank fastening is with straps. I will try a similar fastening arrangement.
Location of the front side of runner plank measured and marked. Fixing blocks made to fix the plank in correct place.
Holes for the straps being made.
The fixing blocks were glued and screwed to the hull.
The bottom of the hull was left un coated earlier. But now all wood work on the hull is ready and varnish can be applied to the bottom also.
Welcome to MyIceBoat blog. The intention of this blog is to share my experiences and thoughts of my ice boat build. The blog is set up as a building diary were I post stuff during the build. As I'm often referring to the designer Bernd Stymers building instructions the address to his home page can be found below where also the building instructions can be found! http://www.isabella-iceboat.com/isabella.html Please also visit my other blog at http://mydodgedartrearcouch.blogspot.com
Sunday, 6 March 2016
Sunday, 14 February 2016
Surface treatment.
I started with the hull here one of the first layers of varnish is applied.
A back rest was made of 9 mm plywood.
A desperate attempt to clean the garage before springboard and runner plank will get varnished. Dust is a problem when building in the same space as applying coating! For every layer of varnish applied the amount of dust in the coating accumulates finally making the surface feel like sandpaper. One way to improve the surface despite the dust is to wet sand the surface before applying last layer of varnish. I used a 400 grit wet sand paper.
Monday, 8 February 2016
Springboard.
The springboard and what it needs to be able to do is a bit of a mystery to me.
As the name suggests I guess it should be able to take shocks when sailing on uneven ice. The following question is how stiff should the springboard be and how do you measure the stiffness? No idea at this point! The DN ice boat does not have a springboard it uses a spring between hull and front runner chock so I guess no help can be found from DN forums.
Another thing I'm wondering about is caster angle. Is it desirable to have a caster angle on the front runner steering shaft? And if so what should the angle be? I think applying a caster angle could make the steering more "user friendly". The Ice boats I have sailed tend to have quite aggressive steering. I plan to steer my boat with feet only, no tiller.
Third issue is the length of the springboard. How does the length of the springboard affect the handling of the boat? The longer the springboard is the easier it should be to tip the boat over.
It's been a couple of days since I originally wrote the questions above and since then I have had some time to seek information and give the issues some thought. I came up with the following conclusions.
Bernd Stymer has described building a spring board of two 12mm planks glued together so that's what I'm going to do too! What ever stiffness I end up with after gluing the planks together is what I tend to use!
I have been seeking the internet for information about caster angle for iceboats. I only found one article about caster angle or tilted pivot angle as it was called. The article mentioned a maximum value of four (4) degrees tilted pivot angle. The reason for the maximum value was a fear of front runner body hitting the front runner chock. I don't expect this to be a problem with the front runner chock I plan to build so I decided to aim for five (5) degrees caster angle! Why five degrees? Well I had the calculations ready from when making the rear runner plank and it was close to four degrees mentioned in the article...As good as any other guess!
The length of the plank I measured from the drawing in the building instructions!
Now that I have a plan it's time to start building the springboard. I had originally bought a 120 X 15 mm plank to use for building the springboard. Since my plan is now to use 12 mm plank I first had to get some help from a friend who owns a thickness planer to get the plank thickness corrected.
Preparing to glue the boards together.
The plank is glued up side down. In the right side of the picture you can see that I have tried to prepare the five degrees caster angle already at this stage. In this way I should be able to drill the hole for the steering shaft in a straight angle towards the springboard.
Drilling the hole for the steering shaft in a straight angle towards the reinforcement piece. Once the reinforcement piece has been glued in place I will drill the last bit true the spring board by hand.
Glue clamps removed. The plank bounced back quite a lot this time witch was expected since bending radius was small causing big tension when forcing the plank down in the gluing phase.
Trying to determine what the caster angle actually landed on.
Result about four (4) degrees!
Favorite tool used for making the sides of the spring board round.
The result.
Preparing to glue the reinforcement piece.
A lot of glue clamps for a small piece of wood!
Glue clamps removed and drilling the hole true the springboard. It would have been smarter to drill the entire hole in one go when the springboard was ready!
This piece under the springboard should not be needed but because of my experiment with the caster angle the board is slightly curved were the front runner chock will touch the spring board. I'm worried this might cause problems when steering! So I glue this additional piece in hope that the front runner chock will be able to turn freely.
Once the glue has dried the springboard is ready!
As the name suggests I guess it should be able to take shocks when sailing on uneven ice. The following question is how stiff should the springboard be and how do you measure the stiffness? No idea at this point! The DN ice boat does not have a springboard it uses a spring between hull and front runner chock so I guess no help can be found from DN forums.
Another thing I'm wondering about is caster angle. Is it desirable to have a caster angle on the front runner steering shaft? And if so what should the angle be? I think applying a caster angle could make the steering more "user friendly". The Ice boats I have sailed tend to have quite aggressive steering. I plan to steer my boat with feet only, no tiller.
Third issue is the length of the springboard. How does the length of the springboard affect the handling of the boat? The longer the springboard is the easier it should be to tip the boat over.
It's been a couple of days since I originally wrote the questions above and since then I have had some time to seek information and give the issues some thought. I came up with the following conclusions.
Bernd Stymer has described building a spring board of two 12mm planks glued together so that's what I'm going to do too! What ever stiffness I end up with after gluing the planks together is what I tend to use!
I have been seeking the internet for information about caster angle for iceboats. I only found one article about caster angle or tilted pivot angle as it was called. The article mentioned a maximum value of four (4) degrees tilted pivot angle. The reason for the maximum value was a fear of front runner body hitting the front runner chock. I don't expect this to be a problem with the front runner chock I plan to build so I decided to aim for five (5) degrees caster angle! Why five degrees? Well I had the calculations ready from when making the rear runner plank and it was close to four degrees mentioned in the article...As good as any other guess!
The length of the plank I measured from the drawing in the building instructions!
Now that I have a plan it's time to start building the springboard. I had originally bought a 120 X 15 mm plank to use for building the springboard. Since my plan is now to use 12 mm plank I first had to get some help from a friend who owns a thickness planer to get the plank thickness corrected.
Preparing to glue the boards together.
The plank is glued up side down. In the right side of the picture you can see that I have tried to prepare the five degrees caster angle already at this stage. In this way I should be able to drill the hole for the steering shaft in a straight angle towards the springboard.
Drilling the hole for the steering shaft in a straight angle towards the reinforcement piece. Once the reinforcement piece has been glued in place I will drill the last bit true the spring board by hand.
Glue clamps removed. The plank bounced back quite a lot this time witch was expected since bending radius was small causing big tension when forcing the plank down in the gluing phase.
Trying to determine what the caster angle actually landed on.
Result about four (4) degrees!
Favorite tool used for making the sides of the spring board round.
The result.
Preparing to glue the reinforcement piece.
A lot of glue clamps for a small piece of wood!
Glue clamps removed and drilling the hole true the springboard. It would have been smarter to drill the entire hole in one go when the springboard was ready!
This piece under the springboard should not be needed but because of my experiment with the caster angle the board is slightly curved were the front runner chock will touch the spring board. I'm worried this might cause problems when steering! So I glue this additional piece in hope that the front runner chock will be able to turn freely.
Once the glue has dried the springboard is ready!
Sunday, 31 January 2016
Runner plank part two. Adjusting the stiffness of the plank.
I recall reading somewhere that for the Isabella Iceboat a good value for runner plank stiffness is when the rear runner plank bends 4-5 cm when having 100 kg on the middle of the runner plank. Most of the information available on the internet is for the DN iceboat. For the DN the stiffness is determined in relation to the sailors weight. One value I found for the DN is sailors weight +15-20 kg should cause about 50 mm bend. In my case both of the above is roughly the same so I will try to get the plank stiffness to be in that range.
Setting up the test. After this picture was taken I also added some round pipes to act as rollers under the piece of plywood in one end of the plank to minimize the influence of friction between the plank and floor.
.
Measuring the distance to the floor before applying weight on the plank.
About 100 kg.
The plank was too stiff so material from the plank needs to be removed to make it bend more. First I rounded the corners with a router but the impact on the stiffness was
The steps with measuring and removing material was repeated until I finally ended up with the plank bending ~40 mm with 100 kg weight on it. This is still in the stiffer end of the scale but I decided not to use any more time on this phase of the build.
A finishing touch with sand paper and the rear runner plank is considered ready. In this picture it can also be seen that I have left the ends in rectangular shape this because I believe it will be easier to fasten the steel fittings to a rectangular shape. Also the upper middle part of the plank that will touch the hull was left in rectangular shape.
Sunday, 24 January 2016
Runner plank.
In the plans the rear runner plank is suggested to be made of a straight 45X95 mm plank and to use wedges to achieve a five (5) degree toe in on the runners. This so that when sitting in the boat the runners will hit the ice in a ninety (90) degrees angle. Building the runner plank in this way is easy and I'm sure it will work fine, therefore I will leave it as plan b in case my plank turns out to be a failure.
I am trying to make the runner plank as on a DN iceboat with a bent plank to achieve the toe in on the runners. Building the plank in this way is obviously more complicated and much more time consuming than using a straight plank and I'm not sure there are any advantages except that its more fun to build.
Preparations.
About ten years ago I built a strip kayak. I had saved the building jig and now I finally got some use for it again.
Trying out if the planks will bend enough.
Some math was needed to get the angles right.
Applying glue.
The traditional kind of glue clamp is not optimal for this job. It is difficult to get even pressure over the entire plank. But this is what I have available so this is what I try to manage with.
All clamps in place. I tried to get a straight part in the middle witch is the same width as the hull of the boat. Now I just hope the plank will keep its shape when removing the glue clamps.
I am trying to make the runner plank as on a DN iceboat with a bent plank to achieve the toe in on the runners. Building the plank in this way is obviously more complicated and much more time consuming than using a straight plank and I'm not sure there are any advantages except that its more fun to build.
Preparations.
About ten years ago I built a strip kayak. I had saved the building jig and now I finally got some use for it again.
The planks sawed to correct length.
Trying out if the planks will bend enough.
Some math was needed to get the angles right.
Applying glue.
The traditional kind of glue clamp is not optimal for this job. It is difficult to get even pressure over the entire plank. But this is what I have available so this is what I try to manage with.
All clamps in place. I tried to get a straight part in the middle witch is the same width as the hull of the boat. Now I just hope the plank will keep its shape when removing the glue clamps.
Saturday, 16 January 2016
Mast Foot
I made the mast foot according to the design mentioned in the plans for IsabellaClassic. The reason for choosing this design is that I haven't made up my mind how to make the short support mast that holds the windsurfing rig up. The design with 3 holes enables testing different solutions and also a possibility to trim the boat a bit by changing in witch hole the mast is.
The mast foot is made of two pieces of 90 X 21mm planks that are glued together. One of the planks has holes for the mast and support mast. Also the steering mechanism is part of the mast foot.
Mast foot was glued and screwed for maximum strength.
The mast foot is made of two pieces of 90 X 21mm planks that are glued together. One of the planks has holes for the mast and support mast. Also the steering mechanism is part of the mast foot.
Preparing to glue the pieces together.
Since the pieces did not fit at all I had to find a way to force them straight when gluing them together.
Fabrication of mast foot continues. In the right side of the picture the hole for the M8 bolt that will act as shaft for the steering mechanism can be seen.
The bolt head and washer has to be lowered so that the mast foot can be glued and screwed to the deck. I used a router (seen in the picture above) to make the lowering.
Testing how the mast foot will look on the boat.
First "test drive". Safety is important when ice sailing ;-)
Almost ready for assembly just have to drill the holes for the screws.
Mast foot was glued and screwed for maximum strength.
Subscribe to:
Posts (Atom)